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“I tell you,” went on Syme with passion, “that every time a train comes in I feel that it
has broken past batteries of besiegers, and that man has won a battle against chaos.
You say contemptuously that when one has left Sloane Square one must come to Vic-
toria. I say that one might do a thousand things instead, and that whenever I really
come there I have the sense of hairbreadth escape. And when I hear the guard shout
out the word ‘Victoria’, it is not an unmeaning word. It is to me the cry of a herald
announcing conquest. It is to me indeed ‘Victoria’; it is the victory of Adam.”

—The Man Who Was Thursday, G.K. Chesterton

KEY POINTS

• A variety of routing algorithms have been developed for packet-
switching, frame relay, and ATM networks, and for the Internet and
internetworks. These algorithms share many common principles.

• Routing schemes can be categorized based on a number of factors, such
as what criterion is used to determine the best route between two
nodes, what strategy is used for obtaining information needed to deter-
mine route, and whether a distributed or centralized algorithm is used.

• The routing function attempts to find the least-cost route through the
network, with cost based on number of hops, expected delay, or other
metrics. Adaptive routing algorithms typically rely on the exchange of
information about traffic conditions among nodes.

A key design issue in switched networks, including packet-switching, frame relay,
and ATM networks, and with internets, is that of routing. In general terms, the
routing function seeks to design routes through the network for individual pairs
of communicating end nodes such that the network is used efficiently.

This chapter begins with a brief overview of issues involved in routing
design. Next, we look at the routing function in packet-switching networks and
then examine least-cost algorithms that are a central part of routing in switched
networks. These topics cover issues that are relevant to routing in internets as
well as packet-switching networks.

12.1 ROUTING IN PACKET-SWITCHING NETWORKS

One of the most complex and crucial design aspects of switched data networks is
routing. This section surveys key characteristic that can be used to classify routing
strategies. The principles described in this section are also applicable to internet-
work routing, discussed in Part Five.



12.1 / ROUTING IN PACKET-SWITCHING NETWORKS 353

1The term hop is used somewhat loosely in the literature. The more common definition, which we use, is
that the number of hops along a path from a given source to a given destination is the number of links
between network nodes (packet-switching nodes, ATM switches, routers, etc.) that a packet traverses
along that path. Sometimes the number of hops is defined to include the link between the source station
and the network and the link between the destination station and the network. This latter definition pro-
duces a value two greater than the definition we use.

Characteristics

The primary function of a packet-switching network is to accept packets from a source
station and deliver them to a destination station. To accomplish this, a path or route
through the network must be determined; generally, more than one route is possible.
Thus, a routing function must be performed. The requirements for this function
include

• Correctness • Fairness

• Simplicity • Optimality

• Robustness • Efficiency

• Stability

The first two items on the list, correctness and simplicity, are self-explanatory.
Robustness has to do with the ability of the network to deliver packets via some route
in the face of localized failures and overloads. Ideally, the network can react to such con-
tingencies without the loss of packets or the breaking of virtual circuits. The designer
who seeks robustness must cope with the competing requirement for stability. Tech-
niques that react to changing conditions have an unfortunate tendency to either react
too slowly to events or to experience unstable swings from one extreme to another. For
example, the network may react to congestion in one area by shifting most of the load
to a second area. Now the second area is overloaded and the first is underutilized, caus-
ing a second shift. During these shifts, packets may travel in loops through the network.

A tradeoff also exists between fairness and optimality. Some performance cri-
teria may give higher priority to the exchange of packets between nearby stations
compared to an exchange between distant stations. This policy may maximize aver-
age throughput but will appear unfair to the station that primarily needs to commu-
nicate with distant stations.

Finally, any routing technique involves some processing overhead at each
node and often a transmission overhead as well, both of which impair network effi-
ciency.The penalty of such overhead needs to be less than the benefit accrued based
on some reasonable metric, such as increased robustness or fairness.

With these requirements in mind, we are in a position to assess the various
design elements that contribute to a routing strategy. Table 12.1 lists these elements.
Some of these categories overlap or are dependent on one another. Nevertheless, an
examination of this list serves to clarify and organize routing concepts.

Performance Criteria The selection of a route is generally based on some per-
formance criterion. The simplest criterion is to choose the minimum-hop route (one
that passes through the least number of nodes) through the network.1 This is an
easily measured criterion and should minimize the consumption of network
resources. A generalization of the minimum-hop criterion is least-cost routing. In
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Table 12.1 Elements of Routing Techniques for Packet-Switching Networks

Performance Criteria Network Information Source

Number of hops None

Cost Local

Delay Adjacent node

Throughput Nodes along route

All nodes

Decision Time

Packet (datagram) Network Information Update Timing

Session (virtual circuit) Continuous

Periodic

Decision Place Major load change

Each node (distributed) Topology change

Central node (centralized)

Originating node (source)
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Figure 12.1 Example Network Configuration

this case, a cost is associated with each link, and, for any pair of attached stations, the
route through the network that accumulates the least cost is sought. For example,
Figure 12.1 illustrates a network in which the two arrowed lines between a pair of
nodes represent a link between these nodes, and the corresponding numbers repre-
sent the current link cost in each direction. The shortest path (fewest hops) from
node 1 to node 6 is 1-3-6 but the least-cost path is 1-4-5-6

Costs are assigned to links to support one or more design
objectives. For example, the cost could be inversely related to the data rate (i.e., the
higher the data rate on a link, the lower the assigned cost of the link) or the current
queuing delay on the link. In the first case, the least-cost route should provide the
highest throughput. In the second case, the least-cost route should minimize delay.

1cost = 1 + 1 + 2 = 42. 1cost = 5 + 5 = 102,
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In either the minimum-hop or least-cost approach, the algorithm for determin-
ing the optimum route for any pair of stations is relatively straightforward, and the
processing time would be about the same for either computation. Because the least-
cost criterion is more flexible, this is more common than the minimum-hop criterion.

Several least-cost routing algorithms are in common use. These are described
in Section 12.3.

Decision Time and Place Routing decisions are made on the basis of some
performance criterion.Two key characteristics of the decision are the time and place
that the decision is made.

Decision time is determined by whether the routing decision is made on a
packet or virtual circuit basis. When the internal operation of the network is data-
gram, a routing decision is made individually for each packet. For internal virtual
circuit operation, a routing decision is made at the time the virtual circuit is estab-
lished. In the simplest case, all subsequent packets using that virtual circuit follow
the same route. In more sophisticated network designs, the network may dynami-
cally change the route assigned to a particular virtual circuit in response to changing
conditions (e.g., overload or failure of a portion of the network).

The term decision place refers to which node or nodes in the network are
responsible for the routing decision. Most common is distributed routing, in which
each node has the responsibility of selecting an output link for routing packets as
they arrive. For centralized routing, the decision is made by some designated node,
such as a network control center. The danger of this latter approach is that the loss
of the network control center may block operation of the network. The distributed
approach is perhaps more complex but is also more robust. A third alternative, used
in some networks, is source routing. In this case, the routing decision is actually
made by the source station rather than by a network node and is then communi-
cated to the network. This allows the user to dictate a route through the network
that meets criteria local to that user.

The decision time and decision place are independent design variables. For
example, in Figure 12.1, suppose that the decision place is each node and that the
values depicted are the costs at a given instant in time: the costs may change. If a
packet is to be delivered from node 1 to node 6, it might follow the route 1-4-5-6,
with each leg of the route determined locally by the transmitting node. Now let the
values change such that 1-4-5-6 is no longer the optimum route. In a datagram net-
work, the next packet may follow a different route, again determined by each node
along the way. In a virtual circuit network, each node will remember the routing
decision that was made when the virtual circuit was established, and simply pass on
the packets without making a new decision.

Network Information Source and Update Timing Most routing strate-
gies require that decisions be based on knowledge of the topology of the network,
traffic load, and link cost. Surprisingly, some strategies use no such information and
yet manage to get packets through; flooding and some random strategies (discussed
later) are in this category.

With distributed routing, in which the routing decision is made by each node, the
individual node may make use of only local information, such as the cost of each out-
going link. Each node might also collect information from adjacent (directly
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connected) nodes, such as the amount of congestion experienced at that node. Finally,
there are algorithms in common use that allow the node to gain information from all
nodes on any potential route of interest. In the case of centralized routing, the central
node typically makes use of information obtained from all nodes.

A related concept is that of information update timing, which is a function of
both the information source and the routing strategy. Clearly, if no information is
used (as in flooding), there is no information to update. If only local information is
used, the update is essentially continuous. That is, an individual node always knows
its local conditions. For all other information source categories (adjacent nodes, all
nodes), update timing depends on the routing strategy. For a fixed strategy, the
information is never updated. For an adaptive strategy, information is updated from
time to time to enable the routing decision to adapt to changing conditions.

As you might expect, the more information available, and the more frequently
it is updated, the more likely the network is to make good routing decisions. On the
other hand, the transmission of that information consumes network resources.

Routing Strategies

A large number of routing strategies have evolved for dealing with the routing
requirements of packet-switching networks. Many of these strategies are also
applied to internetwork routing, which we cover in Part Five. In this section, we sur-
vey four key strategies: fixed, flooding, random, and adaptive.

Fixed Routing For fixed routing, a single, permanent route is configured for each
source-destination pair of nodes in the network. Either of the least-cost routing
algorithms described in Section 12.3 could be used. The routes are fixed, or at least
only change when there is a change in the topology of the network. Thus, the link
costs used in designing routes cannot be based on any dynamic variable such as traf-
fic. They could, however, be based on expected traffic or capacity.

Figure 12.2 suggests how fixed routing might be implemented. A central rout-
ing matrix is created, to be stored perhaps at a network control center. The matrix
shows, for each source-destination pair of nodes, the identity of the next node on the
route.

Note that it is not necessary to store the complete route for each possible
pair of nodes. Rather, it is sufficient to know, for each pair of nodes, the identity of
the first node on the route. To see this, suppose that the least-cost route from X to
Y begins with the X-A link. Call the remainder of the route this is the part
from A to Y. Define as the least-cost route from A to Y. Now, if the cost of is
greater than that of then the X-Y route can be improved by using instead.
If the cost of is less than then is not the least-cost route from A to Y.
Therefore, Thus, at each point along a route, it is only necessary to know
the identity of the next node, not the entire route. In our example, the route from
node 1 to node 6 begins by going through node 4. Again consulting the matrix, the
route from node 4 to node 6 goes through node 5. Finally, the route from node 5 to
node 6 is a direct link to node 6. Thus, the complete route from node 1 to node 6 is
1-4-5-6.

From this overall matrix, routing tables can be developed and stored at each
node. From the reasoning in the preceding paragraph, it follows that each node need

R1 = R2 .
R2R2 ,R1

R2R2 ,
R1R2

R1 ;
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CENTRAL ROUTING DIRECTORY
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Figure 12.2 Fixed Routing (using Figure 12.1)

only store a single column of the routing directory. The node’s directory shows the
next node to take for each destination.

With fixed routing, there is no difference between routing for datagrams and
virtual circuits. All packets from a given source to a given destination follow the
same route. The advantage of fixed routing is its simplicity, and it should work well
in a reliable network with a stable load. Its disadvantage is its lack of flexibility. It
does not react to network congestion or failures.

A refinement to fixed routing that would accommodate link and node outages
would be to supply the nodes with an alternate next node for each destination. For
example, the alternate next nodes in the node 1 directory might be 4, 3, 2, 3, 3.

Flooding Another simple routing technique is flooding. This technique requires
no network information whatsoever and works as follows. A packet is sent by a
source node to every one of its neighbors. At each node, an incoming packet is
retransmitted on all outgoing links except for the link on which it arrived. For exam-
ple, if node 1 in Figure 12.1 has a packet to send to node 6, it send a copy of that
packet (with a destination address of 6), to nodes 2, 3, and 4. Node 2 will send a copy
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2For each pair of end systems attached to the network, there is a minimum-hop path. The length of the
longest such minimum-hop path is the diameter of the network.

to nodes 3 and 4. Node 4 will send a copy to nodes 2, 3, and 5. And so it goes. Even-
tually, a number of copies of the packet will arrive at node 6. The packet must have
some unique identifier (e.g., source node and sequence number, or virtual circuit
number and sequence number) so that node 6 knows to discard all but the first copy.

Unless something is done to stop the incessant retransmission of packets, the
number of packets in circulation just from a single source packet grows without
bound. One way to prevent this is for each node to remember the identity of those
packets it has already retransmitted. When duplicate copies of the packet arrive,
they are discarded. A simpler technique is to include a hop count field with each
packet. The count can originally be set to some maximum value, such as the diame-
ter (length of the longest minimum-hop path through the network)2 of the network.
Each time a node passes on a packet, it decrements the count by one. When the
count reaches zero, the packet is discarded.

An example of the latter tactic is shown in Figure 12.3. The label on each
packet in the figure indicates the current value of the hop count field in that packet.
A packet is to be sent from node 1 to node 6 and is assigned a hop count of 3. On the
first hop, three copies of the packet are created, and the hop count is decrement to
2. For the second hop of all these copies, a total of nine copies are created. One of
these copies reaches node 6, which recognizes that it is the intended destination and
does not retransmit. However, the other nodes generate a total of 22 new copies for
their third and final hop. Each packet now has a hope count of 1. Note that if a node
is not keeping track of packet identifier, it may generate multiple copies at this third
stage. All packets received from the third hop are discarded, because the hop count
is exhausted. In all, node 6 has received four additional copies of the packet.

The flooding technique has three remarkable properties:

• All possible routes between source and destination are tried. Thus, no matter
what link or node outages have occurred, a packet will always get through if at
least one path between source and destination exists.

• Because all routes are tried, at least one copy of the packet to arrive at the des-
tination will have used a minimum-hop route.

• All nodes that are directly or indirectly connected to the source node are
visited.

Because of the first property, the flooding technique is highly robust and
could be used to send emergency messages. An example application is a military
network that is subject to extensive damage. Because of the second property, flood-
ing might be used initially to set up the route for a virtual circuit.The third property
suggests that flooding can be useful for the dissemination of important information
to all nodes; we will see that it is used in some schemes to disseminate routing
information.

The principal disadvantage of flooding is the high traffic load that it generates,
which is directly proportional to the connectivity of the network.
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Figure 12.3 Flooding Example 1hop count = 32

Random Routing Random routing has the simplicity and robustness of
flooding with far less traffic load. With random routing, a node selects only
one outgoing path for retransmission of an incoming packet. The outgoing
link is chosen at random, excluding the link on which the packet arrived. If
all links are equally likely to be chosen, then a node may simply utilize out-
going links in a round-robin fashion.
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A refinement of this technique is to assign a probability to each outgoing link and to
select the link based on that probability.The probability could be based on data rate,
in which case we have

where

The sum is taken over all candidate outgoing links. This scheme should pro-
vide good traffic distribution. Note that the probabilities could also be based on
fixed link costs.

Like flooding, random routing requires the use of no network information.
Because the route taken is random, the actual route will typically not be the least-
cost route nor the minimum-hop route. Thus, the network must carry a higher than
optimum traffic load, although not nearly as high as for flooding.

Adaptive Routing In virtually all packet-switching networks, some sort of adap-
tive routing technique is used. That is, the routing decisions that are made change as
conditions on the network change. The principal conditions that influence routing
decisions are

• Failure: When a node or link fails, it can no longer be used as part of a route.

• Congestion: When a particular portion of the network is heavily congested, it is
desirable to route packets around rather than through the area of congestion.

For adaptive routing to be possible, information about the state of the network
must be exchanged among the nodes. There are several drawbacks associated with
the use of adaptive routing, compared to fixed routing:

• The routing decision is more complex; therefore, the processing burden on
network nodes increases.

• In most cases, adaptive strategies depend on status information that is collected
at one place but used at another.There is a tradeoff here between the quality of
the information and the amount of overhead. The more information that is
exchanged, and the more frequently it is exchanged, the better will be the rout-
ing decisions that each node makes. On the other hand, this information is itself
a load on the constituent networks, causing a performance degradation.

• An adaptive strategy may react too quickly, causing congestion-producing
oscillation, or too slowly, being irrelevant.

Despite these real dangers, adaptive routing strategies are by far the most
prevalent, for two reasons:

• An adaptive routing strategy can improve performance, as seen by the net-
work user.

Ri = data rate on link i

Pi = probability of selecting link i

Pi =
Ri

a jRj
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• An adaptive routing strategy can aid in congestion control, which is discussed
in Chapter 13. Because an adaptive routing strategy tends to balance loads, it
can delay the onset of severe congestion.

These benefits may or may not be realized, depending on the soundness of the
design and the nature of the load. By and large, adaptive routing is an extraordinar-
ily complex task to perform properly. As demonstration of this, most major packet-
switching networks, such as ARPANET and its successors, and many commercial
networks, have endured at least one major overhaul of their routing strategy.

A convenient way to classify adaptive routing strategies is on the basis of
information source: local, adjacent nodes, all nodes.An example of an adaptive rout-
ing strategy that relies only on local information is one in which a node routes each
packet to the outgoing link with the shortest queue length, Q. This would have the
effect of balancing the load on outgoing links. However, some outgoing links may
not be headed in the correct general direction. We can improve matters by also tak-
ing into account preferred direction, much as with random routing. In this case, each
link emanating from the node would have a bias for each destination i, such that
lower values of indicate more preferred directions. For each incoming packet
headed for node i, the node would choose the outgoing link that minimizes 
Thus a node would tend to send packets in the right direction, with a concession
made to current traffic delays.

As an example, Figure 12.4 show the status of node 4 of Figure 12.1 at a certain
point in time. Node 4 has links to four other nodes. Packets have been arriving and a
backlog has built up, with a queue of packets waiting for each of the outgoing links.
A packet arrives from node 1 destined for node 6.To which outgoing link should the
packet be routed? Based on current queue lengths and the values of bias for1B62

Q + Bi .
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Bi ,
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To 2

To 1
Node 4's Bias

Table for
Destination 6

Next Node Bias
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Figure 12.4 Example of Isolated Adaptive Routing
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each outgoing link, the minimum value of is 4, on the link to node 3. Thus,
node 4 routes the packet through node 3.

Adaptive schemes based only on local information are rarely used because
they do not exploit easily available information. Strategies based on information
from adjacent nodes or all nodes are commonly found. Both take advantage of
information that each node has about delays and outages that it experiences. Such
adaptive strategies can be either distributed or centralized. In the distributed case,
each node exchanges delay information with other nodes. Based on incoming infor-
mation, a node tries to estimate the delay situation throughout the network, and
applies a least-cost routing algorithm. In the centralized case, each node reports its
link delay status to a central node, which designs routes based on this incoming
information and sends the routing information back to the nodes.

12.2 EXAMPLES: ROUTING IN ARPANET

In this section, we look at several examples of routing strategies. All of these were
initially developed for ARPANET, which is a packet-switching network that was the
foundation of the present-day Internet. It is instructive to examine these strategies
for several reasons. First, these strategies and similar ones are also used in other
packet-switching networks, including a number of networks on the Internet. Second,
routing schemes based on the ARPANET work have also been used for internet-
work routing in the Internet and in private internetworks. And finally, the
ARPANET routing scheme evolved in a way that illuminates some of the key
design issues related to routing algorithms.

First Generation

The original routing algorithm, designed in 1969, was a distributed adaptive algo-
rithm using estimated delay as the performance criterion and a version of the Bell-
man-Ford algorithm (Section 12.3). For this algorithm, each node maintains two
vectors:

where

sij = the next node in the current minimum-delay route from i to j

Si = successor node vector for node i

N = number of nodes in the network

dij = current estimate of minimum delay from node i to node j 1dii = 02
Di = delay vector for node i

Di = E di1#
#
#

diN

U Si = E si1#
#
#

siN

U

Q + B6
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Periodically (every 128 ms), each node exchanges its delay vector with all of its
neighbors. On the basis of all incoming delay vectors, a node k updates both of its
vectors as follows:

where

Figure 12.5 provides an example of the original ARPANET algorithm, using the
network of Figure 12.6. This is the same network as that of Figure 12.1, with some of
the link costs having different values (and assuming the same cost in both directions).
Figure 12.5a shows the routing table for node 1 at an instant in time that reflects the

lki = current estimate of delay from k to i

A = set of neighbor nodes for k

skj = i using i that minimizes the preceding expression

dkj = min
i H A

 [dij + lki]
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link costs of Figure 12.6. For each destination, a delay is specified, and the next node
on the route that produces that delay.At some point, the link costs change to those of
Figure 12.1. Assume that node 1’s neighbors (nodes 2, 3, and 4) learn of the change
before node 1. Each of these nodes updates its delay vector and sends a copy to all of
its neighbors, including node 1 (Figure 12.5b). Node 1 discards its current routing table
and builds a new one, based solely on the incoming delay vector and its own estimate
of link delay to each of its neighbors.The result is shown in Figure 12.5c.

The estimated link delay is simply the queue length for that link. Thus, in build-
ing a new routing table, the node will tend to favor outgoing links with shorter queues.
This tends to balance the load on outgoing links. However, because queue lengths
vary rapidly with time, the distributed perception of the shortest route could change
while a packet is en route. This could lead to a thrashing situation in which a packet
continues to seek out areas of low congestion rather than aiming at the destination.

Second Generation

After some years of experience and several minor modifications, the original rout-
ing algorithm was replaced by a quite different one in 1979 [MCQU80]. The major
shortcomings of the old algorithm were as follows:

• The algorithm did not consider line speed, merely queue length. Thus, higher-
capacity links were not given the favored status they deserved.

• Queue length is, in any case, an artificial measure of delay, because some vari-
able amount of processing time elapses between the arrival of a packet at a
node and its placement in an outbound queue.

• The algorithm was not very accurate. In particular, it responded slowly to con-
gestion and delay increases.

The new algorithm is also a distributed adaptive one, using delay as the perfor-
mance criterion, but the differences are significant. Rather than using queue length as
a surrogate for delay, the delay is measured directly. At a node, each incoming packet
is timestamped with an arrival time. A departure time is recorded when the packet is
transmitted. If a positive acknowledgment is returned, the delay for that packet is
recorded as the departure time minus the arrival time plus transmission time and
propagation delay. The node must therefore know link data rate and propagation
time. If a negative acknowledgment comes back, the departure time is updated and
the node tries again, until a measure of successful transmission delay is obtained.

Every 10 seconds, the node computes the average delay on each outgoing link.
If there are any significant changes in delay, the information is sent to all other
nodes using flooding. Each node maintains an estimate of delay on every network
link. When new information arrives, it recomputes its routing table using Dijkstra’s
algorithm (Section 12.3).

Third Generation

Experience with this new strategy indicated that it was more responsive and stable
than the old one. The overhead induced by flooding was moderate because each
node does this at most once every 10 seconds. However, as the load on the network
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grew, a shortcoming in the new strategy began to appear, and the strategy was
revised in 1987 [KHAN89].

The problem with the second strategy is the assumption that the measured
packet delay on a link is a good predictor of the link delay encountered after all
nodes reroute their traffic based on this reported delay. Thus, it is an effective rout-
ing mechanism only if there is some correlation between the reported values and
those actually experienced after rerouting. This correlation tends to be rather high
under light and moderate traffic loads. However, under heavy loads, there is little
correlation. Therefore, immediately after all nodes have made routing updates, the
routing tables are obsolete!

As an example, consider a network that consists of two regions with only two
links, A and B, connecting the two regions (Figure 12.7). Each route between two
nodes in different regions must pass through one of these links. Assume that a situ-
ation develops in which most of the traffic is on link A. This will cause the link delay
on A to be significant, and at the next opportunity, this delay value will be reported
to all other nodes. These updates will arrive at all nodes at about the same time, and
all will update their routing tables immediately. It is likely that this new delay value
for link A will be high enough to make link B the preferred choice for most, if not
all, interregion routes. Because all nodes adjust their routes at the same time, most
or all interregion traffic shifts at the same time to link B. Now the link delay value
on B will become high, and there will be a subsequent shift to link A.This oscillation
will continue until the traffic volume subsides.

There are a number of reasons why this oscillation is undesirable:

• A significant portion of available capacity is unused at just the time when it is
needed most: under heavy traffic load.

A

B

Figure 12.7 Packet-Switching Network Subject to Oscillations
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• The overutilization of some links can lead to the spread of congestion within
the network (this will be seen in the discussion of congestion in Chapter 13).

• The large swings in measured delay values result in the need for more fre-
quent routing update messages. This increases the load on the network at just
the time when the network is already stressed.

The ARPANET designers concluded that the essence of the problem was that
every node was trying to obtain the best route for all destinations, and that these efforts
conflicted. It was concluded that under heavy loads, the goal of routing should be to
give the average route a good path instead of attempting to give all routes the best path.

The designers decided that it was unnecessary to change the overall routing
algorithm. Rather, it was sufficient to change the function that calculates link costs.
This was done in such a way as to damp routing oscillations and reduce routing
overhead. The calculation begins with measuring the average delay over the last
10 seconds. This value is then transformed with the following steps:

1. Using a simple single-server queuing model, the measured delay is trans-
formed into an estimate of link utilization. From queuing theory, utilization
can be expressed as a function of delay as follows:

where

The service time was set at the network-wide average packet size (600 bits)
divided by the data rate of the link.

2. The result is then smoothed by averaging it with the previous estimate of utilization:

where

Averaging increases the period of routing oscillations, thus reducing routing
overhead.

3. The link cost is then set as a function of average utilization that is designed to
provide a reasonable estimate of cost while avoiding oscillation. Figure 12.8
indicates the way in which the estimate of utilization is converted into a cost
value. The final cost value is, in effect, a transformed value of delay.

In Figure 12.8, delay is normalized to the value achieved on an idle line, which is
just propagation delay plus transmission time. One curve on the figure indicates the
way in which the actual delay rises as a function of utilization; the increase in delay is
due to queuing delay at the node. For the revised algorithm, the cost value is kept at

r1n2 = link utilization measured at sampling time n

U1n2 = average utilization calculated at sampling time n

U1n + 12 = 0.5 * r1n + 12 + 0.5 * U1n2

Ts = service time

T = measured delay

r = link utilization

r =
21Ts - T2
Ts - 2T
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Figure 12.8 ARPANET Delay Metrics

the minimum value until a given level of utilization is reached. This feature has the
effect of reducing routing overhead at low traffic levels. Above a certain level of uti-
lization, the cost level is allowed to rise to a maximum value that is equal to three
times the minimum value. The effect of this maximum value is to dictate that traffic
should not be routed around a heavily utilized line by more than two additional hops.

Note that the minimum threshold is set higher for satellite links. This encour-
ages the use of terrestrial links under conditions of light traffic, because the terres-
trial links have much lower propagation delay. Note also that the actual delay curve
is much steeper than the transformation curves at high utilization levels. It is this
steep rise in link cost that causes all of the traffic on a link to be shed, which in turn
causes routing oscillations.

In summary, the revised cost function is keyed to utilization rather than delay.
The function acts similar to a delay-based metric under light loads and to a capacity-
based metric under heavy loads.

12.3 LEAST-COST ALGORITHMS

Virtually all packet-switching networks and all internets base their routing decision
on some form of least-cost criterion. If the criterion is to minimize the number of
hops, each link has a value of 1. More typically, the link value is inversely propor-
tional to the link capacity, proportional to the current load on the link, or some com-
bination. In any case, these link or hop costs are used as input to a least-cost routing
algorithm, which can be simply stated as follows:

Given a network of nodes connected by bidirectional links, where each
link has a cost associated with it in each direction, define the cost of a path
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between two nodes as the sum of the costs of the links traversed. For each
pair of nodes, find a path with the least cost.

Note that the cost of a link may differ in its two directions. This would be true,
for example, if the cost of a link equaled the length of the queue of packets awaiting
transmission from each of the two nodes on the link.

Most least-cost routing algorithms in use in packet-switching networks and
internets are variations of one of two common algorithms, known as Dijkstra’s algo-
rithm and the Bellman-Ford algorithm. This section provides a summary of these
two algorithms.

Dijkstra’s Algorithm

Dijkstra’s algorithm [DIJK59] can be stated as: Find the shortest paths from a
given source node to all other nodes by developing the paths in order of increas-
ing path length. The algorithm proceeds in stages. By the kth stage, the shortest
paths to the k nodes closest to (least cost away from) the source node have been
determined; these nodes are in a set T. At stage the node not in T that has
the shortest path from the source node is added to T. As each node is added to T,
its path from the source is defined. The algorithm can be formally described as
follows. Define:

N � set of nodes in the network

s � source node

T � set of nodes so far incorporated by the algorithm

w(i, j) � rom cost from node i to node j; w(i, i) � 0; w(i, j) � � if the two nodes are
not directly connected; w(i, j) 
 0 if the two nodes are directly connected

L(n) � cost of the least-cost path from node s to node n that is currently known
to the algorithm; at termination, this is the cost of the least-cost path in
the graph from s to n

The algorithm has three steps; steps 2 and 3 are repeated until That is,
steps 2 and 3 are repeated until final paths have been assigned to all nodes in the
network:

1. [Initialization]

i.e., the set of nodes so far incorporated consists
of only the source node

for i.e., the initial path costs to neighboring nodes are
simply the link costs

2. [Get Next Node] Find the neighboring node not in T that has the least-cost path
from node s and incorporate that node into T: Also incorporate the edge that is
incident on that node and a node in T that contributes to the path. This can be
expressed as

Find x x T such that L(x) = min
jxT

L(j)

n Z sL(n) = w(s, n)

T = 5s6

T = N.

1k + 12,
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Add x to T; add to T the edge that is incident on x and that contributes the least
cost component to L(x), that is, the last hop in the path.

3. [Update Least-Cost Paths]

If the latter term is the minimum, the path from s to n is now the path from s to
x concatenated with the edge from x to n.

The algorithm terminates when all nodes have been added to T. At termina-
tion, the value L(x) associated with each node x is the cost (length) of the least-cost
path from s to x. In addition, T defines the least-cost path from s to each other node.

One iteration of steps 2 and 3 adds one new node to T and defines the least-
cost path from s to that node. That path passes only through nodes that are in T. To
see this, consider the following line of reasoning.After k iterations, there are k nodes
in T, and the least-cost path from s to each of these nodes has been defined. Now
consider all possible paths from s to nodes not in T. Among those paths, there is one
of least cost that passes exclusively through nodes in T (see Problem 12.4), ending
with a direct link from some node in T to a node not in T. This node is added to T
and the associated path is defined as the least-cost path for that node.

Table 12.2a and Figure 12.9 show the result of applying this algorithm to the
graph of Figure 12.1, using The shaded edges define the spanning tree for the
graph. The values in each circle are the current estimates of L(x) for each node x. A

s = 1.

L(n) = min[L(n), L(x) + w(x, n)] for all n x T

Table 12.2 Example of Least-Cost Routing Algorithms (using Figure 12.1)

(a) Dijkstra’a Algorithm 

Iteration T L(2) Path L(3) Path L(4) Path L(5) Path L(6) Path

1 2 1-2 5 1-3 1 1-4 — —

2 2 1-2 4 1-4-3 1 1-4 2 1-4-5 —

3 2 1-2 4 1-4-3 1 1-4 2 1-4-5 —

4 2 1-2 3 1-4-5-3 1 1-4 2 1-4-5 4 1-4-5-6

5 2 1-2 3 1-4-5-3 1 1-4 2 1-4-5 4 1-4-5-6

6 2 1-2 3 1-4-5-3 1 1-4 2 1-4-5 4 1-4-5-651, 2, 3, 4, 5, 66
51, 2, 3, 4, 56
51, 2, 4, 56

q51, 2, 46
q51, 46
qq516

1s = 12

(b) Bellman-Ford Algorithm 

h Path Path Path Path Path

0 — — — — —

1 2 1-2 5 1-3 1 1-4 — —

2 2 1-2 4 1-4-3 1 1-4 2 1-4-5 10 1- 3-6

3 2 1-2 3 1-4-5-3 1 1-4 2 1-4-5 4 1-4-5-6

4 2 1-2 3 1-4-5-3 1 1-4 2 1-4-5 4 1-4-5-6

qq
qqqqq

Lh162Lh152Lh142Lh132Lh122
1s = 12
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node is shaded when it is added to T. Note that at each step the path to each node
plus the total cost of that path is generated. After the final iteration, the least-cost
path to each node and the cost of that path have been developed. The same proce-
dure can be used with node 2 as source node, and so on.

Bellman-Ford Algorithm

The Bellman-Ford algorithm [FORD62] can be stated as follows: Find the shortest
paths from a given source node subject to the constraint that the paths contain at
most one link, then find the shortest paths with a constraint of paths of at most two

Figure 12.9 Dijkstra’s Algorithm Applied to Graph of Figure 12.1
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links, and so on. This algorithm also proceeds in stages. The algorithm can be for-
mally described as follows. Define

s � source node

w(i, j) � link cost from node i to node j; w(i, i) = 0; w(i, j) � � if the two nodes are
not directly connected; if the two nodes are directly connected

h � maximum number of links in a path at the current stage of the algorithm

Lh(n) � cost of the least-cost path from node s to node n under the constraint of no
more than h links

1. [Initialization]

2. [Update]

For each successive 
For each compute

Connect n with the predecessor node j that achieves the minimum, and elimi-
nate any connection of n with a different predecessor node formed during an
earlier iteration. The path from s to n terminates with the link from j to n.

For the iteration of step 2 with and for each destination node n, the
algorithm compares potential paths from s to n of length with the path that
existed at the end of the previous iteration. If the previous, shorter, path has less
cost, then that path is retained. Otherwise a new path with length is defined
from s to n; this path consists of a path of length K from s to some node j, plus a
direct hop from node j to node n. In this case, the path from s to j that is used is the
K-hop path for j defined in the previous iteration (see Problem 12.5).

Table 12.2b and Figure 12.10 show the result of applying this algorithm to
Figure 12.1, using At each step, the least-cost paths with a maximum number
of links equal to h are found. After the final iteration, the least-cost path to each
node and the cost of that path have been developed. The same procedure can be
used with node 2 as source node, and so on. Note that the results agree with those
obtained using Dijkstra’s algorithm.

Comparison

One interesting comparison can be made between these two algorithms, having to
do with what information needs to be gathered. Consider first the Bellman-Ford
algorithm. In step 2, the calculation for node n involves knowledge of the link cost to
all neighboring nodes to node n [i.e., w(j, n)] plus the total path cost to each of those
neighboring nodes from a particular source node s [i.e., ]. Each node can main-
tain a set of costs and associated paths for every other node in the network and
exchange this information with its direct neighbors from time to time. Each node
can therefore use the expression in step 2 of the Bellman-Ford algorithm, based
only on information from its neighbors and knowledge of its link costs, to update its

Lh1j2

s = 1.

K + 1

K + 1
h = K,

Lh + 11n2 = min
j

[Lh1j2 + w1j, n2]
n Z s,

h Ú 0:

Lh1s2 = 0, for all h

L01n2 = q , for all n Z s

w1i, j2 Ú 0
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costs and paths. On the other hand, consider Dijkstra’s algorithm. Step 3 appears to
require that each node must have complete topological information about the net-
work. That is, each node must know the link costs of all links in the network. Thus,
for this algorithm, information must be exchanged with all other nodes.

In general, evaluation of the relative merits of the two algorithms should con-
sider the processing time of the algorithms and the amount of information that must
be collected from other nodes in the network or internet. The evaluation will
depend on the implementation approach and the specific implementation.

A final point: Both algorithms are known to converge under static conditions
of topology, and link costs and will converge to the same solution. If the link costs
change over time, the algorithm will attempt to catch up with these changes. How-
ever, if the link cost depends on traffic, which in turn depends on the routes chosen,
then a feedback condition exists, and instabilities may result.

12.4 RECOMMENDED READING

[MAXE90] is a useful survey of routing algorithms.Another survey, with numerous examples,
is [SCHW80].

[CORM01] contains a detailed analysis of the least-cost algorithms discussed in this
chapter. [BERT92] also discusses these algorithms in detail.
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Figure 12.10 Bellman-Ford Algorithm Applied to Graph of Figure 12.1
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12.5 KEY TERMS, REVIEW QUESTIONS,AND PROBLEMS

Key Terms

adaptive routing
alternate routing
Bellman-Ford algorithm

Dijkstra’s algorithm
fixed routing
flooding

least-cost algorithms
random routing

Review Questions

12.1. What are the key requirements for a routing function for a packet-switching
network?

12.2. What is fixed routing?
12.3. What is flooding?
12.4. What are the advantages and disadvantages of adaptive routing?
12.5. What is a least-cost algorithm?
12.6. What is the essential difference between Dijkstra’s algorithm and the Bellman-Ford

algorithm?

Problems

12.1 Consider a packet-switching network of N nodes, connected by the following
topologies:
a. Star: one central node with no attached station; all other nodes attach to the cen-

tral node.
b. Loop: each node connects to two other nodes to form a closed loop.
c. Fully connected: each node is directly connected to all other nodes.
For each case, give the average number of hops between stations.

12.2 Consider a binary tree topology for a packet-switching network. The root node con-
nects to two other nodes. All intermediate nodes connect to one node in the direction
toward the root, and two in the direction away from the root.At the bottom are nodes
with just one link back toward the root. If there are nodes, derive an expres-
sion for the mean number of hops per packet for large N, assuming that trips between
all node pairs are equally likely. Hint: You will find the following equalities useful:

a
q

i = 1
Xi =

X

1 - X
; a

q

i = 1
iXi =

X

11 - X22

2N - 1
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12.3 Dijkstra’s algorithm, for finding the least-cost path from a specified node s to a speci-
fied node t, can be expressed in the following program:

for n :� 1 to N do
begin

L[n] :� �; final[n] :� false; {all nodes are temporarily labeled with
�} pred[n] :� 1

end;
L[s] :� 0; final[s] :� true; {node s is permanently labeled with 0}
recent :� s; {the most recent node to be permanently labeled is s}
path :=  true;
{initialization over }

while final[t] = false do
begin

for n :� 1 to N do {find new label}
if (w[recent, n] < �) AND (NOT final[n]) then
{for every immediate successor of recent that is not permanently labeled, do }

begin {update temporary labels}
newlabel :� L[recent] � w[recent,n];
if newlabel �L[n] then

begin L[n] :� newlabel; pred[n] :� recent end
{re-label n if there is a shorter path via node recent and make
recent the predecessor of n on the shortest path from s}

end;
temp :� �;
for x :� 1 to N do {find node with smallest temporary label}

if (NOT final[x]) AND (L[x] � temp) then
begin y :� x; temp :�L[x] end;

if temp < 8 then {there is a path} then
begin final[y] :� true; recent :� y end
{y, the next closest node to s gets permanently labeled}

else begin path :� false; final[t] :� true end
end

In this program, each node is assigned a temporary label initially. As a final path to a
node is determined, it is assigned a permanent label equal to the cost of the path from
s. Write a similar program for the Bellman-Ford algorithm. Hint: The Bellman-Ford
algorithm is often called a label-correcting method, in contrast to Dijkstra’s label-
setting method.

12.4 In the discussion of Dijkstra’s algorithm in Section 12.3, it is asserted that at each iter-
ation, a new node is added to T and that the least-cost path for that new node passes
only through nodes already in T. Demonstrate that this is true. Hint: Begin at the
beginning. Show that the first node added to T must have a direct link to the source
node. Then show that the second node to T must either have a direct link to the
source node or a direct link to the first node added to T, and so on. Remember that all
link costs are assumed nonnegative.

12.5 In the discussion of the Bellman-Ford algorithm, it is asserted that at the iteration for
which if any path of length is defined, the first K hops of that path
form a path defined in the previous iteration. Demonstrate that this is true.

12.6 In step 3 of Dijkstra’s algorithm, the least-cost path values are only updated for nodes
not yet in T. Is it possible that a lower-cost path could be found to a node already in
T? If so, demonstrate by example. If not, provide reasoning as to why not.

12.7 Using Dijkstra’s algorithm, generate a least-cost route to all other nodes for nodes 2
through 6 of Figure 12.1. Display the results as in Table 12.2a.

12.8 Repeat Problem 12.7 using the Bellman-Ford algorithm.

K + 1h = K,
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12.9 Apply Dijkstra’s routing algorithm to the networks in Figure 12.11. Provide a table
similar to Table 12.2a and a figure similar to Figure 12.9.

12.10 Repeat Problem 12.9 using the Bellman-Ford algorithm.
12.11 Will Dijkstra’s algorithm and the Bellman-Ford algorithm always yield the same solu-

tions? Why or why not?
12.12 Both Dijkstra’s algorithm and the Bellman-Ford algorithm find the least-cost paths

from one node to all other nodes. The Floyd-Warshall algorithm finds the least-cost
paths between all pairs of nodes together. Define

N � set of nodes in the network
w(i, j) � link cost from node i to node j; w(i, i) � 0; w(i, j) � � if the two nodes are

not directly connected
Ln(i, j) � cost of the least-cost path from node i to node j with the constraint that

only nodes 1, 2, . . . , n can be used as intermediate nodes on paths

The algorithm has the following steps:

1. Initialize:

2. For 

Explain the algorithm in words. Use induction to demonstrate that the algorithm
works.

Ln + 11i, j2 = min[Ln1i, j2, Ln1i, n + 12 + Ln1n + 1, j2] for all i Z j

n = 0, 1, Á , N - 1

L01i, j2 = w1i, j2, for all i, j, i Z j

Figure 12.11 Packet-Switching Networks with Link Costs
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12.13 In Figure 12.3, node 1 sends a packet to node 6 using flooding. Counting the transmis-
sion of one packet across one link as a load of one, what is the total load generated if
a. Each node discards duplicate incoming packets?
b. A hop count field is used and is initially set to 5, and no duplicate is discarded?

12.14 It was shown that flooding can be used to determine the minimum-hop route. Can it
be used to determine the minimum delay route?

12.15 With random routing, only one copy of the packet is in existence at a time. Neverthe-
less, it would be wise to utilize a hop count field. Why?

12.16 Another adaptive routing scheme is known as backward learning. As a packet is
routed through the network, it carries not only the destination address, but the source
address plus a running hop count that is incremented for each hop. Each node builds
a routing table that gives the next node and hop count for each destination. How is
the packet information used to build the table? What are the advantages and disad-
vantages of this technique?

12.17 Build a centralized routing directory for the networks of Figure 12.11.
12.18 Consider a system using flooding with a hop counter. Suppose that the hop counter is

originally set to the ”diameter” of the network. When the hop count reaches zero, the
packet is discarded except at its destination. Does this always ensure that a packet
will reach its destination if there exists at least one operable path? Why or why not?


